3x^2+10=180

Simple and best practice solution for 3x^2+10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+10=180 equation:



3x^2+10=180
We move all terms to the left:
3x^2+10-(180)=0
We add all the numbers together, and all the variables
3x^2-170=0
a = 3; b = 0; c = -170;
Δ = b2-4ac
Δ = 02-4·3·(-170)
Δ = 2040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2040}=\sqrt{4*510}=\sqrt{4}*\sqrt{510}=2\sqrt{510}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{510}}{2*3}=\frac{0-2\sqrt{510}}{6} =-\frac{2\sqrt{510}}{6} =-\frac{\sqrt{510}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{510}}{2*3}=\frac{0+2\sqrt{510}}{6} =\frac{2\sqrt{510}}{6} =\frac{\sqrt{510}}{3} $

See similar equations:

| X-30°=2x | | 2(x-1)+9+3x=67 | | 3(2x-9)=24 | | -8k+6=-10k+1 | | 7+3x=3x+12 | | 9x+50=150 | | 4(2x+9)=15x+17-7x+19 | | 1/4m+3=4 | | 3x+3x+3x+3x=(2x+5)+(2x+5)+(x+1)+(x+1) | | (y)(-6)(-3)=(2)(y)(9) | | -2k+3=-17 | | 46=6t-7 | | 2d*12=2 | | 3x+3x+3x+3x=(2x=5)+(2x+5)+(x+1)+(x+1) | | 8v=4v+24 | | .5y=110 | | (6x+15)+(10x-45)=180 | | X=-y(10-10) | | -6=n-10/2 | | a2=46.24 | | 3/x+8=-2 | | 2/25=40/x | | (2x+8)+115+118+81=360 | | –10c+4=–8c | | y=67 | | 64=4(1+5b) | | 2x+9=3x+4+4x-2 | | -7r-8=-9 | | 2350+45x=3000 | | 8x+4=2(3x+5) | | x-1+x-3=14 | | b+19=−21 |

Equations solver categories